## Coupled Viscous/Inviscid Analysis of Powered-Lift Airfoils and Wings, Phase I



Completed Technology Project (2011 - 2011)

#### **Project Introduction**

This proposal is in response to NASA SBIR Topic A2.08 in the area of "Variable Fidelity, Physics-Based Design/Analysis Tools". The development of a coupled viscous/inviscid analysis tool for powered-lift airfoils and wings is presented. In this context, powered-lift airfoils are taken to be airfoils under the influence of a high-energy jet, and include jet-flaps, augmenter-flaps, upper surface blowing, and circulation control airfoils. This methodology consists of coupling a viscous jet analysis, using a finite-difference approach, with a potential flow panel calculation. The method uses an iterative procedure to capture the effects of viscous mixing and determine the correct jet shape. The goal in developing 2-D powered-lift predictions is to couple this analysis with a preexisting modified Weissinger method to accurately predict 3-D wing performance based on sectional data. In this manner, high-lift wing characteristics can be determined at a fraction of the computational cost of CFD. An MDAO framework for aircraft-level optimization will be developed with the goal of integrating the powered-lift analysis such that ESTOL concepts and technologies can be incorporated at the conceptual and preliminary design stages.

#### **Primary U.S. Work Locations and Key Partners**





Coupled Viscous/Inviscid Analysis of Powered-Lift Airfoils and Wings, Phase I

#### **Table of Contents**

| Project Introduction          | 1 |
|-------------------------------|---|
| Primary U.S. Work Locations   |   |
| and Key Partners              | 1 |
| Project Transitions           | 2 |
| Organizational Responsibility | 2 |
| Project Management            | 2 |
| Technology Maturity (TRL)     | 2 |
| Technology Areas              | 3 |
| Target Destinations           | 3 |



#### Small Business Innovation Research/Small Business Tech Transfer

# Coupled Viscous/Inviscid Analysis of Powered-Lift Airfoils and Wings, Phase I



Completed Technology Project (2011 - 2011)

| Organizations<br>Performing Work | Role                       | Туре                                                 | Location              |
|----------------------------------|----------------------------|------------------------------------------------------|-----------------------|
| Avid LLC                         | Lead<br>Organization       | Industry<br>Small<br>Disadvantaged<br>Business (SDB) | Yorktown,<br>Virginia |
| Langley Research Center(LaRC)    | Supporting<br>Organization | NASA Center                                          | Hampton,<br>Virginia  |

#### **Primary U.S. Work Locations**

Virginia

#### **Project Transitions**

February 2011: Project Start

September 2011: Closed out

#### **Closeout Documentation:**

• Final Summary Chart(https://techport.nasa.gov/file/138065)

### Organizational Responsibility

## Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

#### **Lead Organization:**

Avid LLC

#### **Responsible Program:**

Small Business Innovation Research/Small Business Tech Transfer

#### **Project Management**

#### **Program Director:**

Jason L Kessler

#### **Program Manager:**

Carlos Torrez

#### **Principal Investigator:**

Ernie Keen

# Technology Maturity (TRL)





Small Business Innovation Research/Small Business Tech Transfer

# Coupled Viscous/Inviscid Analysis of Powered-Lift Airfoils and Wings, Phase I



Completed Technology Project (2011 - 2011)

#### **Technology Areas**

#### **Primary:**

TX15 Flight Vehicle Systems
 TX15.1 Aerosciences
 TX15.1.3 Aeroelasticity

#### **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

